Antipyretic Activity of Platycladus Orientalis Leaves Extract in Rat

Amit Jaiswal*1, Rajesh Kumar1, Kumar Abhinav1, Avanish Kumar2

1Department of Pharmacy, RKDF Collage of Pharmacy, Bhopal, (M.P.), India.
2Department of Pharmacy, TIT Pharmacy, Bhopal, (M.P.), India.
E-mail: mtjswl63@gmail.com, abhi_s9839@yahoo.co.in

Abstract: The study was conducted to screen the antipyretic activity of alcoholic extract of the leaf of Platycladus Orientalis. Platycladus Orientalis is a potent medicinal plant in the Indian systems of medicine. Traditionally it is used as a diuretic, anticancer, anticonvulsant, stomachic, antipyretic, analgesic, etc. In the present study the alcoholic extract of the leaf of Platycladus Orientalis were studied for their antipyretic activity by Brewer’s yeast-induced pyrexia in rats. It was observed that the alcoholic extract produced significant antipyretic activity (p < 0.05). The extract showed marked antipyretic activity in a dose dependent manner.

Keywords: Platycladus Orientalis, brewer’s yeast-induced pyrexia, antipyretic activity, alcoholic extract.

Introduction
Platycladus orientalis, also known as Chinese Arborvitae or Biota. It is native to northwestern China and widely naturalized elsewhere in Asia east to Korea and Japan, south to northern India, and west to northern Iran. It is a small, slow-growing tree, to 15-20 m tall and 0.5 m trunk diameter (exceptionally to 30 m tall and 2 m diameter in very old trees). The foliage forms in flat sprays with scale-like leaves 2-4 mm long. The cones are 15-25 mm long, green ripening brown in about 8 months from pollination, and have 6-12 thick scales arranged in opposite pairs. The seeds are 4-6 mm long, with no wing. The different parts of the plant are traditionally used as a diuretic, anticancer, anticonvulsant, stomachic, antipyretic, analgesic and anthelmintic. The plant has not been explored for its antipyretic activity so far. The present study was therefore aimed at investigating the antipyretic activity of the leaves extracts of Platycladus Orientalis.

Materials and Methods
Collection and preparation of Plant Extract
The leaves of Platycladus orientalis were collected in the month of June from the local field of Bhopal, Madhya Pradesh state, India, and authenticated by Dr. Harish K. Sharma, Ayurvedic Medical College, Davangere, Karnataka, India. A voucher specimen was submitted at Institute's herbarium department for future reference. Dried leaves were ground to coarse powder. Powder was first defatted with pet. ether and then extracted with ethanol which is further evaporated to dryness to obtain alcoholic extract.

Phytochemical screening
Qualitative assay, for the presence of plant phytoconstituents such as carbohydrates, alkaloids, glycosides, flavonoids, tannins and saponins were carried out on the powdered leaves following standard procedure [6, 7].

Standard Drug
Paracetamol tablet was purchased from local market of Bhopal, Madhya Pradesh state, India, made into powder in a mortar pestle and added to it 5% gum acacia. This solution was attributed to make a fine suspension and administered at a dose of 200 mg/kg b.w.)
Animals
Wistar albino rats, weighing 120-150 g, were used for evaluation of antipyretic activity. All the animals were housed in polypropylene cages at room temperature fed on standard pellet diet and water *ad libitum*. The Institutional Animals Ethics Committee approved all the experimental protocols.

ANTIPYRETIC ACTIVITY
Animals were selected for the experiment after confirmation of approximate constant rectal temperature for 7 days. The antipyretic activity of the alcoholic extract was evaluated based on Brewer’s yeast-induced pyrexia in rats. Pyrexia was induced by subcutaneous injection of 10 ml/kg of 15% w/v Brewer’s yeast suspension below the neck. The rectal temperature of each rat was measured at time, 0 hr, using a telethermometer and before injection of the yeast, at 18 hr following yeast injection, the different groups were treated with alcoholic extract (200 and 400 mg/kg), and standard drug, paracetamol (150 mg/kg). Tween 80 (1% v/v) was used as suspending agent. The rectal temperature was then recorded over a period of 6 hr.

RESULTS AND DISCUSSION
Alcoholic extract produced significant antipyretic activity (*p* < 0.05). In general, non-steroidal anti-inflammatory drugs produce their antipyretic action through the inhibition of prostaglandin synthetase within the hypothalamus. Therefore, the antipyretic activity of alcoholic extract of *Platycladus Orientalis* is probably by inhibition of prostaglandin synthesis in hypothalamus.

Further, alcoholic extract was found to contain carbohydrates, alkaloids, glycosides, flavonoids and tannins, through preliminary photochemical screening. The antipyretic activity may be due to one/more group of above Phytoconstituents.

Extract reduced the hyperthermia at both 200 and 400 mg/kg doses 1 hr after administration. The initial and final rectal temperatures in the groups treated with alcoholic extract (400 mg/kg) and paracetamol (150 mg/kg) were 38.53 ± 0.11 and 37.79 ± 0.03; and 38.69 ± 0.11 and 37.89 ± 0.03 0C, respectively. Both Paracetamol and alcoholic extract showed significant antipyretic activity throughout the test period of 6 hr (Table 1).

Table-1 Paracetamol and alcoholic extract showed significant antipyretic activity throughout the test period of 6 hr

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Rectal temperature in °C at various times (hr)</th>
<th>-18</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>--</td>
<td></td>
<td>37.24 ±0.15</td>
<td>38.06 ±0.33</td>
<td>38.30 ±0.06</td>
<td>38.24 ±0.06</td>
<td>38.23 ±0.04</td>
<td>38.24 ±0.06</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>150</td>
<td></td>
<td>37.82 ±0.01</td>
<td>38.69 ±0.11</td>
<td>38.46 ±0.07</td>
<td>38.30 ±0.06</td>
<td>38.15 ±0.03</td>
<td>37.89 ±0.03</td>
</tr>
<tr>
<td>Alcoholic extract</td>
<td>200</td>
<td></td>
<td>37.88 ±0.02</td>
<td>38.79 ±0.12</td>
<td>38.56 ±0.08</td>
<td>38.41 ±0.06</td>
<td>38.19 ±0.03</td>
<td>38.15 ±0.03</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td></td>
<td>37.71 ±0.04</td>
<td>38.53 ±0.11</td>
<td>38.13 ±0.11</td>
<td>38.13 ±0.05</td>
<td>37.86 ±0.03</td>
<td>37.79 ±0.03</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.E.M. (n = 6); *p* < 0.05 compared with 0 h of the same group

REFERENCES
2. Sharma P.C., Yelne M.B. and Dennis T.J. Database on medicinal Plants used in Ayurveda. Vol. 2, Central Council for Research in Ayurveda and Siddha, Department of ISM&H, Ministry of Health and Family Welfare (Govt. of India), New Delhi.


